
This document was prepared in conjunction with work accomplished under Contract No.
DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22161,
phone: (800) 553-6847,
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/index.asp

Available electronically at http://www.osti.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN
37831-0062,
phone: (865)576-8401,
fax: (865)576-5728
email: reports@adonis.osti.gov

http://www.ntis.gov/help/index.asp
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
mailto:reports@adonis.osti.gov

WSRC-TR-2004-00011

Tracking the Inside Intruder Using Net Logon Debug Logging in
Microsoft® Windows® Server Operating Systems

Christina S. Davis
Principle Engineer

Westinghouse Savannah River Company
Savannah River Site

Aiken, South Carolina 29808
christy.davis@srs.gov

ABSTRACT

 In today’s well-connected environments of
the internet, intranets, and extranets, protecting
the Microsoft Windows network can be a
daunting task for the security engineer. Intrusion
Detection Systems are a must-have for most
companies, but few have either the financial
resources or the people resources to implement
and maintain full-scale intrusion detection
systems for their networks and hosts. Many will
at least invest in intrusion detection for their
internet presence, but others have not yet stepped
up to the plate with regard to internal intrusion
detection. Unfortunately, most attacks will come
from within.

 Microsoft Windows server operating systems
are widely used across both large and small
enterprises. Unfortunately, there is no intrusion
detection built-in to the Windows server
operating system. The security logs are valuable
but can be difficult to manage even in a small to
medium sized environment. So the question
arises, can one effectively detect and identify an
inside intruder using the native tools that come
with Microsoft Windows Server operating
systems? One such method is to use Net Logon
Service debug logging to identify and track
malicious user activity.

 This paper discusses how to use Net Logon
debug logging to identify and track malicious
user activity both in real-time and for forensic
analysis.

KEYWORDS

Netlogon, Inside Intruder, Tracking, Windows®
Server 2003, Windows® 2000, Logon

1. Introduction

 Microsoft® Windows® networks are often
the target of malicious computer hacker activity.
While some companies invest in third party
intrusion detection systems, others cannot afford
them or do not have the people resources to
manage them. They must rely on the native tools
and features of Microsoft® Windows® Server
2003 and Windows® 2000, such as the security
logs, to look for questionable activity.

 While the security logs are useful, they can be
unwieldy even in a small to medium sized
domain. It can be difficult to obtain real-time

WSRC-TR-2004-00011

data from the security logs. The security
engineer needs additional methods of identifying
malicious user activity. One such method is the
built-in debug logging feature of the Net Logon
Service. This paper discusses how to use Net
Logon Service debug logging to track suspicious
user activity in Windows® Server 2003 and
Windows® 2000 networks. It also discusses
methods for refining the data obtained from the
Net Logon debug logs.

2. What is the Net Logon Debugging

Feature?

 In order to understand debug logging for the
Net Logon Service, we must define the Net
Logon Service. According to Microsoft®, the
Net Logon Service is defined as “a user-mode
service that runs in the Windows® security
subsystem. The Net Logon service passes the
user's credentials through a secure channel to the
domain database and returns the domain security
identifiers and user rights for the user. In
addition, the Net Logon service performs a
variety of other functions related to the user
logon process, such as periodic password
updates for computer accounts and domain
controller discovery.” [1]

2.1. Enabling Net Logon Debugging

 The Net Logon Service maintains an activity
log on the server in the directory,
%systemroot%\debug\netlogon.log. By default,
the log is empty. However, if one has a need to
troubleshoot net logon activity, such as why user
accounts keep locking out for no apparent
reason, a debug value may be set in the registry
of the domain controllers, to begin capturing net
logon authentication data. We will use the debug
log to track the intruder.

 In our case, we wish to identify and track
only the actual user logon activity, and so we
will set the debug value to 0x20000004. This
will weed out extraneous information such as
Site location and other session information that
we will not need for user tracking. We set this

value by typing nltest /dbflag:0x20000004 at a
command prompt.

 Complete information on how to enable Net
Logon debugging and all of its associated flag
options can be found on the Microsoft® web site
[2].

 NOTE: When the netlogon.log file grows to
19Mb, it is copied to the file,
%systemroot%\debug\netlogon.bak, and a new
netlogon.log file is created. You may consider
backing up the netlogon.bak file each day and
retaining the backups for a period so that you
will have some history if you need to track
activity over a period. 120 days is a good period
to retain logs.

2.2. Contents of the Netlogon.log File

 Let us examine the netlogon.log file with the
0x20000004 debug option set (Table 1).

12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of
MYDOMAIN\CONNIEH from \\JACK-SPRATT (via
SERV3) Entered
12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of
MYDOMAIN\CONNIEH from \\JACK-SPRATT (via
SERV3) Returns 0x0
12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of
MYDOMAIN\CONNIEH from \\JACK-SPRATT (via
SERV3) Entered
12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of MYDOMAIN\ANNJ
from \\ANN-JONES (via SERV7) Entered
12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of
MYDOMAIN\CONNIEH from \\JACK-SPRATT (via
SERV3) Returns 0x0
12/09 07:11:10 [LOGON] SamLogon:
Transitive Network logon of MYDOMAIN\ANNJ
from \\ANN-JONES (via SERV7) Returns 0x0

Table 1: 0x20000004 Debug Option Set

 We see the type of logon (e.g. network or
interactive), the domain/workgroup name of the
user, the user name, the machine from which the
user is logging on, and the machine to which the
user is attempting to connect. The code 0x0
means the logon was successful.

 2

WSRC-TR-2004-00011

2.3. Parsing the Netlogon Log

 When looking for hacker activity, we want to
look first for potential scanning activity. We
will see a great deal of failed logon attempts due
to an unknown user name (code 0xC0000064) or
bad password (code 0xC000006A) and in some
cases, a clear footprint of the utility used to
perform the scan (such as Nessus® or ISS®).
By issuing a simple findstr command at the
command prompt or from within a batch file,
one can extract only the failed attempts, such as
those cases where an unknown user name
attempted to authenticate.

findstr /I "0xC0000064"
c:\winnt\debug\netlogon.log >>
d:\save\failed.txt

 When we examine the output of the findstr
command, we see that the local user
“Administrator” on a machine named
WIN2KPRO has attempted to authenticate or
access many different machines within a few
seconds (Table 2).

01/28 16:16:11 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
MYLAPTOP) Returns 0xC0000064
01/28 16:16:11 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
MYLAPTOP) Returns 0xC0000064
01/28 16:16:16 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
ANDYT) Returns 0xC0000064
01/28 16:16:16 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
ANDYT) Returns 0xC0000064
01/28 16:16:17 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
SALES1) Returns 0xC0000064
01/28 16:16:17 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
SALES1) Returns 0xC0000064
01/28 16:16:17 [LOGON] SamLogon: Network
logon of WIN2KPRO\Administrator from
\\WIN2KPRO (via CHUCKY) Returns
0xC0000064
01/28 16:16:20 [LOGON] SamLogon:
Transitive Network logon of

WIN2KPRO\Administrator from WIN2KPRO (via
BOSS) Returns 0xC0000064
01/28 16:16:20 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\Administrator from WIN2KPRO (via
BOSS) Returns 0xC0000064

Table 2: Failed Logon Data

 The activity is suspicious because the
WIN2KPRO machine is attempting to
authenticate over the network with many
different computers using a pass-through of the
built-in Administrator account. Because the
WIN2KPRO machine is attempting
authentication to so many machines in such a
short period and the failures are unknown
account names, this could suggest the use of a
scanning tool. In this instance, it could be
someone looking for blank or easily guessed
passwords as an easy means to hack into
computers on the network. Also in this instance,
the Administrator account does not exist on the
target machines. It has been renamed. A similar
search on bad password attempt (code
0xC000006A) would yield even more data for
machines that have not renamed the
Administrator account but where the scan
attempted to use a bad password.

 Using the findstr command to parse data, we
can obtain a clear view of some scanning
utilities, such as Nessus® (Table 3). The data
are suspicious because we have one machine
targeted by many user names and passwords in a
short period. (Note: This Nessus® scan was
executed from a Linux computer. While the true
hacker may not use Nessus®, a footprint like this
may allow you to identify when your own
computer security folks are running internal
scans).

12/09 02:05:15 [LOGON] SamLogon:
Transitive Interactive logon of
nessus\nessus from TARGET (via TARGET)
Returns 0xC0000064
12/09 02:05:16 [LOGON] SamLogon:
Transitive Interactive logon of
/etc/passwd\nessus from TARGET (via
TARGET) Entered
12/09 02:05:16 [LOGON] SamLogon:
Transitive Interactive logon of
/etc/passwd\nessus from TARGET (via
TARGET) Returns 0xC0000064
12/09 02:05:17 [LOGON] SamLogon:
Transitive Interactive logon of

 3

WSRC-TR-2004-00011

../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Entered
12/09 02:05:17 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Returns
0xC0000064
12/09 02:05:18 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Entered
12/09 02:05:18 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Returns
0xC0000064
12/09 02:05:18 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Entered
12/09 02:05:18 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Returns
0xC0000064
12/09 02:05:19 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Entered
12/09 02:05:19 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Returns
0xC0000064
12/09 02:05:19 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Entered
12/09 02:05:19 [LOGON] SamLogon:
Transitive Interactive logon of
../../../../../../../etc/passwd\nessus
from TARGET (via TARGET) Returns
0xC0000064
12/09 02:05:20 [LOGON] SamLogon:
Transitive Interactive logon of
Li4vLi4vLi4vLi4vLi4vLi4vZXRjL3Bhc3N3ZAo=\
nessus from TARGET (via TARGET) Entered

Table 3: Nessus Scan Footprint

 We can also obtain data that suggest an ISS®
scan of web servers was performed (Table 4).

01/30 19:06:40 [LOGON] SamLogon:
Transitive Network logon of
(null)\@@#ISS#@@ from WIN2KPRO (via
WEB03) Returns 0xC0000064
01/30 19:06:40 [LOGON] SamLogon:
Transitive Network logon of
WIN2KPRO\@@#ISS#@@ from WIN2KPRO (via
WEB03) Entered

Table 4: ISS Scan Footprint

3. Making Sense of the Data

 Now that we have seen some examples of
how useful the net logon debug log can be, we
need to streamline the gathering and analysis of
this data. We do not want to sift through
mounds of data that may or may not indicate a
problem. The best way to make the data
gathering efficient is to write some simple scripts
to parse the information.

3.1. The FINDSTR Command

To keep life simple, the findstr command is
sufficient for quickly parsing the data. The
findstr command can be executed from a
command prompt or within a batch file. For
example, you may choose to write sophisticated
scripts that dump the data into a database or that
send alerts via email if there are many
occurrences of logon attempts from one machine
within a few seconds of each other.

 A typical simple search looks like this:

findstr /I "0xC0000064"
c:\winnt\debug\netlogon.log >>
d:\save\failed.txt

 This command parses out all failed attempts
caused by an unknown user name from the
netlogon.log file into a text file. We start with
the code unknown user name (0xC0000064)
because the hacker is likely to try to access built-
in accounts such as the Administrator account
first. Since best practices dictate that we rename
the Administrator account to something else, we
will see logon failures if someone attempts to use
this account name.

Let us say we have looked at the failed.txt file
and have determined that there is suspicious
activity coming from a machine name
WIN2KPRO. Perhaps we want to see all activity
associated with this machine. We would execute
the command:

 4

WSRC-TR-2004-00011

findstr /I "WIN2KPRO"
c:\winnt\debug\netlogon.log >>
d:\save\win2kpro.txt

 The results of this query may key us into
additional user names, such as
NESSUS852812095, as well as bad password
attempts and successful logons. We will search
on those names and will continue to find perhaps
even other machines this user is using. In other
words, once we start pulling the string, we may
begin to see the whole seam unravel into a clear
picture of hacker activity on our Windows®
domain.

 If you use findstr commands in batch jobs,
you can execute a series of them at one time.
You can also schedule them using Task
Scheduler and have the results emailed to you or
placed on a server somewhere. All of this
requires no additional software and uses only the
native tools on the server.

3.2. A True Story

 I was involved in a case (it prompted me to
write this paper) in which penetration testing was
being performed in my company. I had no idea
what specific tests were being conducted on my
systems only that auditors were present
somewhere in the company. I discovered an
attempt to use an unusual user name within my
network and began looking at my logs for
information on the user name.

 Through a series of searches for the user
name and subsequent searches for all computers
and all user names that were related to the
original account, my colleagues and I were able
to identify more than ten computer names, and a
dozen user names being used to test the security
of our Windows® network. We identified the
computers and some of the methods used in the
test against us (Nessus®, ISS®, and nmap scans,
as well as some well-known exploits).

 By doing DNS and DHCP lookups, we were
then able to determine IP and MAC addresses
and ultimately the actual physical location of the

auditors. We were also able to notify other
employees that their systems were being scanned
while they were actually being scanned.

 In this case, because a penetration test was
being performed, there was no damage. Through
the use of simple native feature in Windows®,
we identified the auditors.

4. Don’t Forget the Security Logs

 You may be thinking that this is all well and
good, but you want alerts when this stuff
happens so that you do not have to look at these
logs unless there is a reason. To that I would
say, do not forget the security logs! Make sure
you are auditing all logon events and all account
management events at a minimum. Turn on
auditing of system events, object access, and
policy changes as well. Be sure to retain your
logs for at least 120 days. Be sure to back up
and retain the netlogon.bak file. Set up timed
scripts to send you information from the
netlogon.log file. All of these methods can help
you watch your Windows® network.

 Hackers on the inside are patient, and you
may find you need to retrace the hacker’s steps
after the fact. Set up alerting or use third party
monitoring products capable of alerting you to a
series of failed logon attempts. For example,
Adiscon® EventReporter® is an inexpensive
product that is useful for sending alerts from the
event logs. You may wish to refine the alerting
process to send you alerts only if the same alert
occurs say more than five times in one minute
also. You can get very creative with how you set
up your scripts and alerts.

5. Analysis! Analysis! Analysis!

 Setting alerts will help minimize the time
spent chasing windmills; however, you still have
to be vigilant! You, the engineer, still have to
look at the logs yourself with regularity. Human
analysis of the data is the single most important
thing you can do. The alerts can clue you into a
potential problem, but nothing can replace

 5

WSRC-TR-2004-00011

human diligence in analyzing the logs. The
adept hacker will be patient, and this will require
you to be patient also. The hacker may not be as
obvious as running scans that hit dozens of
machines at once. He may be stealthy and hit
one or two machines at a time making it much
more difficult for automated processes to notice
his activity.

 Get to know your data through and through.
Run scripts daily to look for trends. If you know
what is normal for your environment, you will be
able to spot the abnormal more easily. As you
get to know your environment, you will be able
to streamline your scripts to identify changes in
trends. For example, if your net logon log files
usually take three days to fill up, and you begin
to see them filling up daily, you will need to
investigate.

6. Conclusion

 While intrusion detection systems are
extremely valuable and companies should invest
in them where at all possible, there are
circumstances in which this is not feasible.
These companies still need to have some way of
identifying hacker activity in their Windows®
networks. Native tools, while sometimes
unwieldy, can be useful. This paper has sought
to provide a simplistic yet powerful option to the
security engineer for identifying hackers on their
networks. It has also sought to stress the
importance of vigilance and analysis of one’s
own internal environment. By using the
Netlogon log and other native logs and indicators
of the Windows® Server operating systems, the
security engineer can track and identify some
forms of malicious activity in the Windows®
network.

7. References

[1] Microsoft® Corporation. (2003). Quick
Guide for Finding Tools, Retrieved 12/1/2003
from the Microsoft Technet web site:
http://www.microsoft.com/technet/treeview/defa
ult.asp?url=/technet/prodtechnol/windowsserver
2003/proddocs/standard/glossary_srv.asp

[2] Microsoft® Corporation. (2003). Enabling
Debug Logging for the Net Logon Service
(109626), Retrieved 12/1/2003 from the
Microsoft Support web site:
http://support.microsoft.com/default.aspx?scid=k
b;en-us;109626

8. Acknowledgements

Thanks to Jason Oliver for help in refining the
data analysis process and for writing scripts.

Thanks to Bruce Page for his mentorship,
leadership, and encouragement.

 6

	Introduction
	What is the Net Logon Debugging Feature?
	Enabling Net Logon Debugging
	Contents of the Netlogon.log File
	Parsing the Netlogon Log

	Making Sense of the Data
	The FINDSTR Command
	A True Story

	Don’t Forget the Security Logs
	Analysis! Analysis! Analysis!
	Conclusion
	References
	Acknowledgements

